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A method for approximate determination of dispersion relations and displacement "elds
associated with elastic waves in long prismatic bars is established. The method is based on
a matrix formulation of Hamilton's principle and utilizes co-ordinate functions to model the
displacements in the bar. The method, which involves the solution of an eigenvalue problem,
is suitable for use in a mathematical toolbox. It is applied to wave propagation in bars with
square and circular cross-sections. The results obtained agree well with the known exact and
approximate solutions. The convergence rate is illustrated by systematically changing the
order of the co-ordinate functions.
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1. INTRODUCTION

Elastic wave propagation in bars has been a topic of interest to scientists and engineers for
a long period of time, see, e.g., the book by Kolsky [1] where the exact solutions for a bar
with circular cross-section are presented for di!erent modes of wave propagation such as
transverse, longitudinal and torsional. These solutions can also be found, e.g., in references
[2}7]. Also, for elliptical cross-sections, there are exact solutions in terms of in"nite series
[8, 9]. For other shapes of the cross-section, exact solutions do not seem to exist. Di!erent
approaches have been used to "nd the approximate solutions for bars with circular as well
as arbitrary cross-sections. Examples are variational methods [10}12], "nite element
methods [13}15], collocation methods [16, 17] and series solutions [18].

In the recent work done by Volovoi et al. [14] and Taweel et al. [15], a matrix
formulation of Hamilton's principle is used to formulate a "nite element problem. In this
paper, a similar matrix formulation is used, but instead of "nite elements, use is made of
co-ordinate functions valid in the whole cross-section. The co-ordinate functions are
polynomials or Fourier series in terms of the cross-sectional co-ordinates, similar to what
has been used by, e.g., Nigro [10] and BostroK m [18]. This leads to an eigenvalue problem
where the wavenumber is considered to be known and the angular frequency is determined
as an eigenvalue, or vice versa. The eigenvectors contain the generalized co-ordinates which
0022-460X/01/400853#24 $35.00/0 ( 2001 Academic Press



854 S. WIDEHAMMAR E¹ A¸.
are coupled to the co-ordinate functions and determine the distribution of displacements
over the cross-section.

The salient feature of the method presented in this paper is that it combines the matrix
formulation characteristic of the "nite element method with classical series solutions. This
feature makes it easy to set-up and solve a problem with the aid of a mathematical toolbox
such as Matlab [19] to an arbitrary order of the co-ordinate functions without use of a
"nite element grid. Also, the solution can be interpreted and understood from the
properties of the eigenvectors. Another advantage is that a speci"c mode of
wave propagation, e.g., longitudinal, can be studied by using co-ordinate functions which
have appropriate symmetry. In this way, the size of the matrices, i.e., of the problem,
becomes smaller than for general co-ordinate functions which cover all modes of wave
propagation.

The method will be demonstrated for bars with isotropic material and square or circular
cross-section. First, co-ordinate functions for general waves, i.e., all modes of wave
propagation, will be used. Then, the results will be specialized to longitudinal waves. The
results will be compared to a "nite element solution obtained by Aalami [13] for the bar
with square cross-section, and to exact solutions for the bar with circular cross-section.

2. MATRIX FORMULATION OF HAMILTON'S PRINCIPLE

2.1. GENERAL CASE FOR LINEARLY ELASTIC MATERIAL

In the absence of external forces, Hamilton's principle states that

dA P
t2

t1

(¹!;) dtB"0, (1)

where ¹ is the kinetic energy, ; is the elastic strain energy and t
1

and t
2

are two arbitrary
instants of time t. The kinetic energy is given by
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where o is the mass density,
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is the displacement vector, < is the volume of the body, and a &dot' denotes partial
di!erentiation with respect to time t. For a linearly elastic material, the generalized Hooke's
law is given by

s"Ce, (4)
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where C is a symmetric 6]6 matrix containing elastic constants, and
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are vectors containing the components of stress and strain respectively. In terms of the
components of strain, the elastic strain energy of the body is

;"PPP
V

A
1

2
eTCeBd<. (6)

The vector of strain components e and the displacement vector u are related through the
kinematic relation

e"$u, (7)

where $ is a 6]3 partial di!erential operator matrix. Substitution of equation (7) into
equation (6) gives
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Through a combination of equations (1), (2) and (8), Hamilton's principle can be expressed
as
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Performing the variational operation, and carrying out a partial integration with respect to
time, one obtains

P
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t1
PPP
V

(!o duTuK!($du)TC$u) d<dt"0. (10)

Here, use has been made of the conditions du"0 at t"t
1
and t

2
, the fact that the transpose

of a scalar is the scalar itself, and the symmetry of C.

2.2. ELASTIC WAVES IN A PRISMATIC BAR

Elastic waves in an in"nitely long prismatic bar with axis x
3

are now considered. It is
assumed that the displacements can be expressed as the product
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of a dimensionless 3]m matrix U (x
1
, x

2
) with the given co-ordinate functions as elements,

and a vector h(x
3
, t) with m elements which have the dimension of length. This separation

leads to uK"UhG , and du"U dh. It is also assumed that the operator matrix $ be expressed
as the sum
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where $
12

contains partial di!erential operators in the variables x
1

and x
2

and $
3

contains
constant elements. This gives
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where a &prime' denotes partial di!erentiation with respect to x
3
. Inserting equations (11)

and (13) into equation (10), one obtains
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Partial integration in the axial direction x
3

leads to
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where A is the cross-sectional area of the bar. The last integral would provide boundary
conditions at x

3
"a and b for a "nite bar, but will be left out hence-forth as the bar

considered has in"nite length. Furthermore, since dh(x
3
, t) is arbitrary and h(x

3
, t) is

independent of the cross-sectional co-ordinates x
1

and x
2
, equation (15) yields

CoPP
A

UTU dAD hG#CPP
A

($
12

U)TC$
12

U dAD h!CPP
A

UT$T
3
C$

3
UdAD hA

#CPP
A

(($
12

U)TC$
3
U!UT$T

3
C$

12
U) dAD h@"0, (16)



APPROXIMATE DISPERSION RELATIONS IN BARS 857
where 0 is the null vector. This represents a system of m partial di!erential equations for the
m elements of h (x

3
, t).

2.3. DIMENSIONLESS VARIABLES

Reference quantities are now introduced in order to make all the variables and equations
dimensionless. For length, a characteristic transverse dimension x

0
such as the radius

of a circular cross-section, or half the side length of a square cross-section, is used.
The reference modulus E

0
is taken to be a characteristic modulus with dimension of stress

such as Young's modulus if the material is isotropic. For phase velocity, the reference
velocity

c
0
"JE

0
/o (17)

is introduced. From these variables, the reference time, angular frequency and wavenumber
are formed by
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respectively.
By using these reference quantities, equation (16) can be rewritten in the dimensionless

form
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where an overbar indicates a dimensionless quantity. The partial di!erentiations are to be
carried out with respect to the dimensionless quantities. From here on, all variables will be
dimensionless, and therefore, the overbars will be left out.

2.4. HARMONIC WAVES

Consider now the harmonic waves

h"de*(ut`kx3), (20)

where d is a constant vector of complex amplitudes corresponding to the co-ordinate
functions in U , and k and u are the wavenumber and the angular frequency, respectively.
Inserting h into equation (19) and dividing through by the exponential factor, one obtains
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the eigenvalue problem
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This eigenvalue problem relates the wavenumber k to the angular frequency u, one of
them being given and the other being the eigenvalue to be solved for. If k is given, equation
(22) is a generalized eigenvalue problem with m real eigenvalues u2. If instead u is given,
equation (22) is a quadratic eigenvalue problem with 2m eigenvalues k. In the latter case, the
eigenvalues are generally complex valued, and non-real eigenvalues correspond to end
modes [14]. These modes decay exponentially at the ends of a "nite bar and will not be
considered here.

3. COMPUTATIONAL DETAILS

Techniques to solve the eigenvalue problems represented by equation (22) and
a thorough discussion of the solutions can be found in, e.g., the papers by Volovoi et al. [14]
and Taweel et al. [15]. In this paper, the standard commands in Matlab [19], i.e., &eig'
and &polyeig' were used. The area integrations in equations (23)}(26) were carried
out exactly. For simple cross-section geometries, this can be done for the arbitrary
order of the co-ordinate functions and can be implemented in Matlab. For more
complicated geometries of the cross-section, it is recommended to use numerical
integration.
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Examples of the matrix U for square and circular cross-sections will follow.
Corresponding explicit expressions for the matrices K

0
, K

1
, K

2
and M can be found in

Appendix A.

4. ISOTROPIC MATERIAL

So far, it has been assumed that the material is generally anisotropic. If the material is
isotropic, then the matrix C, normalized with respect to Young's modulus E, becomes
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and l is the Poisson ratio.

5. SQUARE CROSS-SECTION

5.1. CARTESIAN CO-ORDINATES

For bars with square cross-section, Cartesian co-ordinates, x
1
"x,x

2
"y and x

3
"z,

normalized with respect to half the side length of the cross-section, will be used. In this case,
the operator matrices are

$
12
"A

L
Lx

0 0

0
L
Ly

0

0 0 0

L
Ly

L
Lx

0

0 0
L
Ly

0 0
L
Lx

B (29)



860 S. WIDEHAMMAR E¹ A¸.
and

$
3
"A

0 0 0

0 0 0

0 0 1

0 0 0

0 1 0

1 0 0
B. (30)

5.2. GENERAL WAVES

Polynomials in x and y are used to form a complete set of co-ordinate functions which
can be used to express an arbitrary, unique and continuous displacement "eld. Thus, the
matrix U of co-ordinate functions is expressed as

U"(U
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U
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2 2 U

n
), (31)

where

U
k
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with

/T(y)"(1 y y2 2 yn) . (33)

In Figure 1, dispersion curves (angular frequency u versus given wavenumber k) for a bar
with square cross-section obtained with n"3 are compared with the results of Aalami [13].
The displacement "elds

u"RMUde*(ut`kx3)N (34)

(R denoting the real part) for the corresponding modes are illustrated in Figure 2.

5.3. LONGITUDINAL WAVES

If a special kind of waves are of interest, inherent symmetries can be used in order to
reduce the number of unknowns. As an example, longitudinal waves with a major
displacement in the axial direction, and symmetry for the displacement vector with regard
to the four planes x"0, y"0, x"y and x"!y, will be considered. The matrix U can
then be written as

U"(U
0

U
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U
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n
), (35)
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Figure 1. Angular frequency u versus wavenumber k for general waves in a bar with square cross-section. First
six non-duplicate modes, n"3 (solid lines). Comparison with Aalami (Aalami's notation: s-B1; h-T1; e-L1;
n-O1: *-S1; £-B2). The Poisson ratio l"0)3. (Dashed line is related to Figure 2).
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where n is an even number. The sub matrices are

U
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where the vectors /
k
and /

n
are

/T
k
(x)"(1 x2 x4 2 xk) , /T

n
(x)"(1 x2 x4 2 xn). (37)

In Figure 3, the angular frequency u is shown as a function of the wavenumber k for the
"rst mode with n"0, 2, 4 and 6. The convergence rate of the method can be judged from the
"gure.

6. CIRCULAR CROSS-SECTION

6.1. CYLINDRICAL CO-ORDINATES

For bars with circular cross-section, cylindrical co-ordinates x
1
"r, x

2
"u and x

3
"z

will be used. The co-ordinates r and z are normalized with respect to the radius of the



Figure 2. Transverse (left) and axial (right) displacement "elds corresponding to k"1)3 for the modes in
Figure 1. Increasing angular frequency from bottom to top.
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cross-section. In this case, the operator matrices are
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Figure 3. Angular frequency u versus wavenumber k for longitudinal waves in a bar with square cross-section.
First mode and n"0, 2, 4, 6. The Poisson ratio l"0)3.
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6.2. GENERAL WAVES

For cylindrical co-ordinates, co-ordinate functions which are polynomials in the radial
co-ordinate r and Fourier series in the angular co-ordinate u are used to form a complete
set of co-ordinate functions which can be used to express an arbitrary unique and
continuous displacement "eld. In this case, the matrix U can be written as
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where the sub matrix
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Figure 4. Phase velocity c ("u/k) versus inverse wavelength j~1 ("k/2n) for the general waves in a bar with
circular cross-section. First four non-duplicate modes, n"2 (solid lines). Comparison with exact solutions from
Pao (e-transversal), Love (h-torsional) and Bancroft (s-longitudinal). For the fourth mode, similar to O1 and S1
in Figures 1 and 2, no exact solution has been found. The Poisson ratio l"0)3.
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corresponds to rigid body motion of the cross-section. The sub matrices

U
ck
"cos (ku) A

/T(r) 0 0

0 /T(r) 0

0 0 /T(r)B (42)

and

U
sk
"sin (ku) A

/T(r) 0 0

0 /T(r) 0

0 0 /T(r)B , (43)

with

/T(r)"( r r2 r3 2 rn ), (44)

are also continuous in the cross-section.
Dispersion curves (phase velocity c"u/k versus the given inverse wavelength

j~1"k/2n) for n"2, are shown in Figure 4. Comparisons are made with exact solutions
for transversal waves from Pao [7], torsional waves from Love [4], and longitudinal waves
from Bancroft [6]. The fourth curve corresponds to a mode similar to mode O1 or S1 in
Figure 1 (cf., also Figure 2) for which no exact solution has been found.

6.3. LONGITUDINAL WAVES

For longitudinal waves in a bar with circular cross-section, there is no dependence on
u and the circumferential displacement uu is zero. Therefore, the dimensions of vectors and
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Figure 5. Angular frequency u versus wave number k for longitudinal waves in a bar with circular cross-section.
First mode and n"1, 3, 5 (solid lines). Comparison with exact solution from Bancroft (#). The Poisson ratio
l"0)3.
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matrices can be reduced. Thus, the displacement vector and those of stresses and strains
become
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Also, the operator matrices become
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Finally, for an isotropic material,
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with a
1
, a

2
and a

3
given by equations (28) as previously.
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Figure 6. Phase velocity c ("u/k) versus inverse wavelength j~1 ("k/2n) for longitudinal waves in a bar with
circular cross-section. First three modes and n"3 (dashed lines) and n"5 (solid lines). Comparison with exact
solutions from Bancroft (#). The Poisson ratio l"0)3.
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Figure 7. Axial surface displacement u
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(r"1), normalized to axial displacement at centerline u
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(r"0), versus

inverse wavelength j~1("k/2n) for longitudinal waves in a bar with circular cross section. First mode and
n"1!5 (solid lines). Comparison with exact solution from Davies (#). The Poisson ratio l"0)3.
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Suitable co-ordinate functions, which assure unique and continuous displacements, can
be written as

U"A
0 /T(r) 0

1 0 /T(r)B (48)

with /T(r) given by equation (44) as previously.
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Figure 5 shows dispersion curves (angular frequency u as a function of wavenumber k)
for the "rst mode and n"1, 3 and 5. The results are compared with the exact solution from
Bancroft [6]. Figure 6 shows phase velocities versus inverse wavelength for the "rst three
modes for n"3 and 5, also compared with exact solutions from Bancroft. On the basis of
equation (34), Figure 7 shows axial displacements at the boundary (r"1), normalized
with respect to axial displacements at the centerline (r"0), for n"1}5. The results are
compared with exact results from Davies [5].

Figures 5}7 show the precision and convergence rate for the dispersion relations as well
as the displacements, using this method.

7. DISCUSSION

A matrix formulation of Hamilton's principle has been used to "nd approximate
dispersion relations and corresponding displacement "elds associated with elastic waves in
long prismatic bars. The method "ts well into mathematical toolboxes such as Matlab [19].
The matrix formulation makes it easy to implement di!erent co-ordinate systems or
co-ordinate functions. Di!erent kinds of linearly elastic materials, such as isotropic or
orthotropic, and di!erent shapes of the cross-section can be handled in a straightforward
manner.

The convergence rate of the method has been demonstrated by solving problems for
increasing orders of co-ordinate functions. The results obtained for relatively low orders of
such functions have been found to agree well with approximate results from the literature
for square cross-sections, and with exact solutions for circular cross-sections.
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APPENDIX A: EXPLICIT EXPRESSIONS FOR MATRICES K
0
, K

1
, K

2
AND M

The facts that K
0
, K

2
and M is symmetric and that K

1
is antisymmetric might be used

when programming, though not always clearly pointed out in this appendix. Throughout
the Appendix, 0 denotes a null-matrix of suitable size. The parameters a

1
,a

2
and a

3
are the

elastic constants from the matrix C, as de"ned in equations (28). The parameter n is the
order of the coordinate functions as de"ned in sections 5.2, 5.3, 6.2 and 6.3. The letters k, l, p
and q are indices.

A.1. SQUARE CROSS-SECTION, GENERAL WAVES

A.1.1. Matrix K
0

K
0
"C

K00
0

K01
0

K02
0

2 K0n
0

K10
0

K11
0

K12
0

2 K1n
0

K20
0

K21
0

K22
0

2 K2n
0

F F F } F

Kn0
0

Kn1
0

Kn2
0

2 Knn
0
D , (A.1)

Kkl
0
"C

Kkl
0,1

Kkl
0,3

0

Kkl
0,2

Kkl
0,4

0

0 0 Kkl
0,5
D , (A.2)
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Kkl
0,1

"C
Kkl,00

0,1
Kkl,01

0,1
Kkl,02

0,1
2 Kkl,0n

0,1
Kkl,10

0,1
Kkl,11

0,1
Kkl,12

0,1
2 Kkl,1n

0,1
Kkl,20

0,1
Kkl,21

0,1
Kkl,22

0,1
2 Kkl,2n

0,1
F F F } F

Kkl,n0
0,1

Kkl,n1
0,1

Kkl,n2
0,1

2 Kkl,nn
0,1

D , (A.3)

Kkl,pq
0,1

"a
1
kl

(1!(!1)k`l~1)

(k#l!1)

(1!(!1)p`q`1)

(p#q#1)

#a
3
pq

(1!(!1)k`l`1)

(k#l#1)

(1!(!1)p`q~1)

(p#q!1)
. (A.4)

The other sub matrices in matrix Kkl
0

have the same structure as Kkl
0,1

(i.e., numbering of
p and q), but the elements are

Kkl,pq
0,2

"(a
2
lp#a

3
kq)

(1!(!1)k`l)

(k#l)

(1!(!1)p`q)

(p#q)
, (A.5)

Kkl,pq
0,3

"(a
2
kq#a

3
lp)

(1!(!1)k`l)

(k#l)

(1!(!1)p`q)

(p#q)
, (A.6)

Kkl,pq
0,4

"a
1
pq

(1!(!1)k`l`1)

(k#l#1)

(1!(!1)p`q~1)

(p#q!1)

#a
3
kl

(1!(!1)k`l~1)

(k#l!1)

(1!(!1)p`q`1)

(p#q#1)
, (A.7)

Kkl,pq
0,5

"a
3
pq

(1!(!1)k`l`1)

(k#l#1)

(1!(!1)p`q~1)

(p#q!1)

#a
3
kl

(1!(!1)k`l~1)

(k#l!1)

(1!(!1)p`q`1)

(p#q#1)
. (A.8)

A.1.2. Matrix K
1

K
1
"C

K00
1

K01
1

K02
1

2 K0n
1

K10
1

K11
1

K12
1

2 K1n
1

K20
1

K21
1

K22
1

2 K2n
1

F F F } F

Kn0
1

Kn1
1

Kn2
1

2 Knn
1
D!C

K00
1

K01
1

K02
1

2 K0n
1

K10
1

K11
1

K12
1

2 K1n
1

K20
1

K21
1

K22
1

2 K2n
1

F F F } F

Kn0
1

Kn1
1

Kn2
1

2 Knn
1
D
T

, (A.9)

Kkl
1
"C

0 0 Kkl
1,3

0 0 Kkl
1,4

Kkl
1,1

Kkl
1,2

0 D . (A.10)
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The sub matrices have the same structure as Kkl
0,1

in equation (A.3), (i.e., the numbering of
p and q), but the elements are

Kkl,pq
1,1

"a
3
k

(1!(!1)k`l )

(k#l )

(1!(!1)p`q`1)

(p#q#1)
, (A.11)

Kkl,pq
1,2

"a
3
p

(1!(!1)k`l`1)

(k#l#1)

(1!(!1)p`q )

(p#q)
, (A.12)

Kkl,pq
1,3

"a
2
k

(1!(!1)k`l)

(k#l)

(1!(!1)p`q`1)

(p#q#1)
, (A.13)

Kkl,pq
1,4

"a
2
p

(1!(!1)k`l`1)

(k#l#1)

(1!(!1)p`q )

(p#q)
. (A.14)

A.1.3. Matrix K
2

Matrix K
2

is similar to matrix K
0

in equation (A.1), but the sub matrices are

Kkl
2
"C

Kkl
2,1

0 0

0 Kkl
2,1

0

0 0 Kkl
2,2
D . (A.15)

The sub matrices of the matrices Kkl
2,1

and Kkl
2,2

have the same structure as Kkl
0,1

in equation
(A.3), (i.e., the numbering of p and q), but the elements are

Kkl,pq
2,1

"a
3

(1!(!1)k`l`1)

(k#l#1)

(1!(!1)p`q`1)

(p#q#1)
, (A.16)

Kkl,pq
2,2

"a
1

(1!(!1)k`l`1)

(k#l#1)

(1!(!1)p`q`1)

(p#q#1)
. (A.17)

A.1.4. Matrix M

Matrix M is the same as matrix K
2
in section A.1.3 if the elastic constants a

1
and a

3
are set

to one.

A.2. SQUARE CROSS-SECTION, LONGITUDINAL WAVES

A.2.1. Matrix K
0

K
0
"C

K00
0

K02
0

K04
0

2 K0n
0

K20
0

K22
0

K24
0

2 K2n
0

K40
0

K42
0

K44
0

2 K4n
0

F F F } F

Kn0
0

Kn2
0

Kn4
0

2 Knn
0
D , (A.18)

Kkl
0
"8C

Kkl
0,1

0

0 Kkl
0,2
D , (A.19)
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Kkl
0,1

"C
Kkl,00

0,1
Kkl,02

0,1
Kkl,04

0,1
2 Kkl,0l

0,1
Kkl,20

0,1
Kkl,22

0,1
Kkl,24

0,1
2 Kkl,2l

0,1
Kkl,40

0,1
Kkl,42

0,1
Kkl,44

0,1
2 Kkl,4l

0,1
F F F } F

Kkl,k0
0,1

Kkl,k2
0,1

Kkl,k4
0,1

2 Kkl,kl
0,1

D , (A.20)

Kkl,pq
0,1

"a
3A

pq

(k#l#1)(p#q!1)
#

lp

(k#q#1)(l#p!1)

#

kq

(l#p#1) (k#q!1)
#

kl

(p#q#1) (k#l!1)B , (A.21)

Kkl
0,2

"C
Kkl,00

0,2
Kkl,02

0,2
Kkl,04

0,2
2 Kkl,0n

0,2
Kkl,20

0,2
Kkl,22

0,2
Kkl,24

0,2
2 Kkl,2n

0,2
Kkl,40

0,2
Kkl,42

0,2
Kkl,44

0,2
2 Kkl,4n

0,2
F F F } F

Kkl,n0
0,2

Kkl,n2
0,2

Kkl,n4
0,2

2 Kkl,nn
0,2

D , (A.22)

Kkl,pq
0,2

"a
1

(k#1)(l#1)

(k#l#1)(p#q#1)
#a

2

(k#1)(l#1)

(l#p#1)(k#q#1)

#a
3A

pq

(k#l#3)(p#q!1)
#

pq

(k#q#1)(l#p#1)B .

(A.23)

A.2.2. Matrix K
1

K
1
"C

K00
1

K02
1

K04
1

2 K0n
1

K20
1

K22
1

K24
1

2 K2n
1

K40
1

K42
1

K44
1

2 K4n
1

F F F } F

Kn0
1

Kn2
1

Kn4
1

2 Knn
1
D!C

K00
1

K02
1

K04
1

2 K0n
1

K20
1

K22
1

K24
1

2 K2n
1

K40
1

K42
1

K44
1

2 K4n
1

F F F } F

Kn0
1

Kn2
1

Kn4
1

2 Knn
1
D

T

, (A.24)

Kkl
1
"8C

0 Kkl
1,2

Kkl
1,1

0 D , (A.25)

Kkl
1,1

"C
Kkl,00

1,1
Kkl,02

1,1
Kkl,04

1,1
2 Kkl,0l

1,1
Kkl,20

1,1
Kkl,22

1,1
Kkl,24

1,1
2 Kkl,2l

1,1
Kkl,40

1,1
Kkl,42

1,1
Kkl,44

1,1
2 Kkl,4l

1,1
F F F } F

Kkl,n0
1,1

Kkl,n2
1,1

Kkl,n4
1,1

2 Kkl,nl
1,1

D , (A.26)

Kkl,pq
1,1

"a
2
(k#1)A

1

(k#l#1)(p#q#1)
#

1

(k#q#1)(l#p#1)B , (A.27)



872 S. WIDEHAMMAR E¹ A¸.
Kkl
1,2

"C
Kkl,00

1,2
Kkl,02

1,2
Kkl,04

1,2
2 Kkl,0n

1,2
Kkl,20

1,2
Kkl,22

1,2
Kkl,24

1,2
2 Kkl,2n

1,2
Kkl,40

1,2
Kkl,42

1,2
Kkl,44

1,2
2 Kkl,4n

1,2
F F F } F

Kkl,k0
1,2

Kkl,k2
1,2

Kkl,k4
1,2

2 Kkl,kn
1,2

D , (A.28)

Kkl,pq
1,2

"a
3A

p

(k#q#1)(l#p#1)
#

k

(p#q#1)(k#l#1)B. (A.29)

A.2.3. Matrix K
2

Matrix K
2
is similar to matrix K

0
in section A.2.1, but the elements in the sub matrices are

Kkl,pq
2,1

"a
1A

1

(k#l#1)(p#q#1)
#

1

(k#q#1)(l#p#1)B , (A.30)

Kkl,pq
2,2

"

a
3

(p#q#1)(k#l#3)
. (A.31)

A.2.4. Matrix M

Matrix M is the same as matrix K
2
in section A.2.3 if the elastic constants a

1
and a

3
are set

to one.

A.3. CIRCULAR CROSS-SECTION, GENERAL WAVES

A.3.1. Matrix K
0

K
0
"C

0 0 0 2 0

0 K0
0

0 2 0

0 0 K1
0

2 0

F F F } F

0 0 0 2 Kn
0
D , (A.32)

K0
0
"2n C

K
0,1

0 0

0 K
0,2

0

0 0 K
0,3
D (A.33)

and for k'0:

Kk
0
"n C

K
0,1

0 0 0 0 0

0 K
0,2

0 0 0 0

0 0 K
0,3

0 0 0

0 0 0 K
0,1

0 0

0 0 0 0 K
0,2

0

0 0 0 0 0 K
0,3

D
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#n C
k2K

0,4
0 0 0 !kKT

0,6
0

0 k2K
0,5

0 kK
0,6

0 0

0 0 k2K
0,4

0 0 0

0 kKT
0,6

0 k2K
0,4

0 0

!kK
0,6

0 0 0 k2K
0,5

0

0 0 0 0 0 k2K
0,4

D . (A.34)

The sub matrices are of dimension n]n with row index p, column index q, and the elements
are

Kpq
0,1

"a
1

1#pq

p#q
#a

2
, Kpq

0,2
"a

3

1!p!q#pq

p#q
, (A.35)

Kpq
0,3

"a
3

pq

p#q
, Kpq

0,4
"a

3

1

p#q
, (A.36)

Kpq
0,5

"a
1

1

p#q
, Kpq

0,6
"

a
1
#a

2
q!a

3
(p!1)

p#q
. (A.37)

A.3.2. Matrix K
1

K
1
"C

0 0 0 2 0

Kb
1

K0
1

0 2 0

Kc
1

0 K1
1

2 0

F F F } F

0 0 0 2 Kn
1
D!C

0 0 0 2 0

Kb
1

K0
1

0 2 0

Kc
1

0 K1
1

2 0

F F F } F

0 0 0 2 Kn
1
D
T

, (A.38)

Kb
1
"2n C

0 0 K
1,1

0 0 0

0 0 0 D , (A.39)

Kc
1
"n C

0 0 0

0 0 0

0 K
1,2

0

0 0 0

0 0 0

K
1,2

0 0
D , (A.40)

K0
1
"2n C

0 0 K
1,4

0 0 0

K
1,3

0 0 D (A.41)
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and for k'0:

Kk
1
"n C

0 0 K
1,4

0 0 0

0 0 0 0 0 kK
1,6

K
1,3

0 0 0 kK
1,5

0

0 0 0 0 0 K
1,4

0 0 !kK
1,6

0 0 0

0 !kK
1,5

0 K
1,3

0 0
D . (A.42)

K
1,1

and K
1,2

are column vectors of dimension n with row index p, and the elements are (all
elements are equal):

Kp
1,1

"a
2
, Kp

1,2
"a

3
. (A.43)

The other sub matrices are of dimension n]n with row index p, column index q, and the
elements are

Kpq
1,3

"a
3

p

p#q#1
, Kpq

1,4
"a

2

p#1

p#q#1
, (A.44)

Kpq
1,5

"a
3

1

p#q#1
, Kpq

1,6
"a

2

1

p#q#1
. (A.45)

A.3.3. Matrix K
2

K
2
"C

Ka
2

[Kb
2
]T [Kc

2
]T 0 2 0

Kb
2

K0
2

0 0 2 0

Kc
2

0 K1
2

0 2 0

0 0 0 K2
2

2 0

F F F F } F

0 0 0 0 2 Kn
2

D , (A.46)

Ka
2
"n C

a
3

0 0

0 a
3

0

0 0 a
1
D , (A.47)

Kb
2
"2n C

0 0 0

0 0 0

0 0 K
2,1
D , (A.48)

Kc
2
"n C

0 K
2,2

0

!K
2,2

0 0

0 0 0

K
2,2

0 0

0 K
2,2

0

0 0 0
D , (A.49)
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K0
2
"2n C

K
2,3

0 0

0 K
2,3

0

0 0 K
2,4
D (A.50)

and for k'0:

Kk
2
"n C

K
2,3

0 0 0 0 0

0 K
2,3

0 0 0 0

0 0 K
2,4

0 0 0

0 0 0 K
2,3

0 0

0 0 0 0 K
2,3

0

0 0 0 0 0 K
2,4

D . (A.51)

K
2,1

and K
2,2

are column vectors of dimension n with row index p, and the elements are

Kp
2,1

"a
1

1

p#2
, Kp

2,2
"a

3

1

p#2
. (A.52)

The other sub matrices are of dimension n]n with row index p, column index q, and the
elements are

Kpq
2,3

"a
3

1

p#q#2
, Kpq

2,4
"a

1

1

p#q#2
. (A.53)

A.3.4. Matrix M

Matrix M is the same as matrix K
2

in section A.3.3, if the elastic constants a
1

and a
3

are
set to one.

A.4. CIRCULAR CROSS-SECTION, LONGITUDINAL WAVES

A.4.1. Matrix K
0

K
0
"2n C

0 0 0

0 K
0,1

0

0 0 K
0,2
D . (A.54)

The sub matrices K
0,1

and K
0,2

are of dimension n]n with row index p, column index q,
and the elements are

Kpq
0,1

"a
1

pq#1

p#q
#a

2
, Kpq

0,2
"a

3

pq

p#q
. (A.55)

A.4.2. Matrix K
1

K
1
"2n C

0 0 0

K
1,1

0 K
1,3

0 K
1,2

0 D!2n C
0 0 0

K
1,1

0 K
1,3

0 K
1,2

0 D
T

. (A.56)
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The column vector K
1,1

is of dimension n with row index p, and the elements are (all
elements are equal)

Kp
1,1

"a
2
. (A.57)

The sub matrices K
1,2

and K
1,3

are of dimension n]n with row index p, column index q,
and the elements are

Kpq
1,2

"a
3

p

p#q#1
, Kpq

1,3
"a

2

p#1

p#q#1
. (A.58)

A.4.3. Matrix K
2

K
2
"2n C

1

2
a
1

0 [K
2,1

]T

0 K
2,2

0

K
2,1

0 K
2,3 D. (A.59)

The column vector K
2,1

is of dimension n with row index p, and the elements are

Kp
2,1

"a
1

1

p#2
. (A.60)

The sub matrices K
2,2

and K
2,3

are of dimension n]n with row index p, column index q,
and the elements are.

Kpq
2,2

"a
3

1

p#q#2
, Kpq

2,3
"a

1

1

p#q#2
. (A.61)

A.4.4. Matrix M

Matrix M is the same as K
2

in section A.4.3, if the elastic constants a
1

and a
3

are set to
one.


	1. INTRODUCTION
	2. MATRIX FORMULATION OF HAMILTON'S PRINCIPLE
	3. COMPUTATIONAL DETAILS
	4. ISOTROPIC MATERIAL
	5. SQUARE CROSS-SECTION
	Figure 1

	6. CIRCULAR CROSS-SECTION
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7

	7. DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX A: EXPLICIT EXPRESSIONS FOR MATRICES K0, K1, K2 AND M

